第2个回答 2024-10-31
+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90=9/10
方法:裂项相消法
1/[n(n+1)]=(1/n)- [1/(n+1)]
由题意得:1/6=1/[2(2+1)]、1/12=1/[3(3+1)]、1/20=1/[4(4+1)]、1/30=1/[5(5+1)]、依次可以表达为1/[n(n+1)]的形式。
所以可得:
1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
=1/(1*2)+1/(2*3)+1/(3*4)+1/(4*5)+1/(5*6)+1/(6*7)+1/(7*8)+1/(8*9)+1/(9*10)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10
=1-1/10
=9/10
裂项法,是分解与组合思想在数列求和中的具体应用。是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。
扩展资料